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Introductory Remarks 

• I did some of the earlier work on an optimization algorithm 
called the ADMM (the Alternating Direction Method of 
Multipliers) 
o But not the earliest work 

 
• I know that the ADMM has been used in image processing 

because about 15 years ago I started being asked to referee a 
deluge of papers with this picture: 

 
• Today I want to talk about an algorithm that uses similar 

building blocks to the ADMM but is much more flexible 
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More General Problem Setting 

The algorithms in this talk can work for monotone inclusion 
problems of the form 

*

1
0 ( )

n

i i i
i

G T G x
=

∈∑  

where 

• 0, , n   are real Hilbert spaces 

• :i i iT    are (generally set-valued) maximal monotone 
operators, 1, ,i n=    

• 0:i iG    are bounded linear maps, 1, ,i n=   
 

However, for this talk we will restrict ourselves to... 
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A General Convex Optimization Problem 

{ }1
min ( )n

i iix
f G x

=∑  

• For 1, ,i n=  , : { }ip
if → ∪ +∞   is closed proper convex 

• For 1, ,i n=  , iG  is a ip m×  real matrix 
 

• Assume you have a class of such problems that is not suitable 
for standard LP/NLP solvers because either 

o The problems are very large 

o They is fairly large but also dense 
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Subgradient Maps of Convex Functions, Monotonicity 

The subgradient map f∂  of a convex function { }: pf → ∪ +∞   is 
given by 

{ }( ) ( ') ( ) , ' ' pf x y f x f x y x x x∂ = ≥ + − ∀ ∈ . 

This has the property that 

( ), ' ( ') ', ' 0y f x y f x x x y y∈∂ ∈∂ ⇒ − − ≥  

Proof: 

 

( ') ( ) , '
( ) ( ') ', '

0 ' , '

f x f x y x x
f x f x y x x

y y x x

− ≥ −

− ≥ −

≥ − −
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Normal Cone Maps 

The indicator function of a nonempty closed convex set C is 

0,
( )

,C

x C
x

x C
δ

∈
= +∞ ∉   

Its subgradient map is the normal cone map CN  of C: 

{ }, ' 0 ' ,
( ) ( )C C

y y x x x C x C
x N x

x C
δ

 − ≤ ∀ ∈ ∈
∂ = = 

∅ ∉
 

 

x y

'x

'y

'x x−

, ' 0
', ' 0

' , ' 0

y x x
y x x

y y x x

− ≤

+ − ≤

− − ≤

C

( ')CN x
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A Subgradient Chain Rule 

• Suppose : { }pf → ∪ +∞   is closed proper convex 

• Suppose G  is a p m×  real matrix 

Then for any x,  

( ) { }( )( ) ( )f G x G f Gx G y y f Gx∂ ⊇ ∂ = ∈∂T T
   

and “usually” 

( )( )( )f G x G f Gx∂ = ∂T
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An Optimality Condition 

Let’s go back to 

{ }1
min ( )n

i iix
f G x

=∑  

Suppose we have 1
1, , , nppm

nz w w∈ ∈ ∈     such that 

1

( ) 1, ,

0

i i i
n

i i
i

w f G z i n

G w
=

∈∂ =

=∑ T



  

The chain rule then implies that 
1

0 ( )n
i ii

f G z
=

 ∈∂  ∑  , so… 

z is a solution to our problem 

• This is always a sufficient optimality condition 

• It’s “usually” necessary as well 

• The iw  are the Lagrange multipliers / dual variables 
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The Primal-Dual Solution Set (Kuhn-Tucker Set) 

{ }1 1
( , , , ) ( 1, ) ( ), 0n

n i i i i ii
z w w i n w f G z G w

=
= ∀ = ∈∂ =∑ T

   

Or, if we assume that , Id mn np m G= =


, 

{ }1
1 1 1

( , , , ) ( 1, 1) ( ), ( )n
n i i i i i ni

z w w i n w f G z G w f z−
− =

= ∀ = − ∈∂ − ∈∂∑ T
   

 

• This is the set of points satisfying the optimality conditions 

• Standing assumption:   is nonempty 

• Essentially in E & Svaiter 2009: 

     is a closed convex set      
 

• In the , Id mn np m G= =


 case, streamline notation: 

For 1 1n−∈ × × w , let 
1 *
1

n
n i ii

w G w−

=
−∑   
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Valid Inequalities for    

• Take some , ip
i ix y ∈  such that ( )i i iy f x∈∂  for 1, ,i n=   

• If ( , )z ∈w , then ( )i i iw f G z∈∂  for 1, ,i n=    

• So, , 0i i i ix G z y w− − ≥  for 1, ,i n=   

• Negate and add up:  

1
( , ) , 0 ( , )

n

i i i i
i

z G z x y w zϕ
=

= − − ≤ ∀ ∈∑ w w  

 

 
{ }( ) 0

( ) 0

H p p

p p

ϕ

ϕ

= =

≤ ∀ ∈
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Confirming that ϕ  is Affine 

The quadratic terms in ( , )zϕ w  take the form 

1 1 1
, , , , 0 0

n n n

i i i i i i
i i i

G z w z G w z G w z
= = =

− = − = − = − =∑ ∑ ∑T T  

• Also true in the , Id mn np m G= =


 case where we drop the nth 
index 

o Slightly different proof, same basic idea 
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Generic Projection Method for a 
Closed Convex Set   in a Hilbert Space  

Apply the following general template: 

• Given kp ∈, choose some affine function kϕ  with 
( ) 0k p pϕ ≤ ∀ ∈  

• Project kp  onto { }( ) 0k kH p pϕ= = , possibly with an 
overrelaxation factor [ ,2 ]kλ ε ε∈ − , giving 1kp + , and repeat… 

 
In our case: 1 nppm= × × ×      and we find kϕ  by picking some 

, : ( ), 1, ,ipk k k k
i i i i ix y y f x i n∈ ∈∂ =   and using the construction above 

{ }
 is affine

( ) 0

( ) 0
( ) 0

k

k k

k

k k

H p p

p p
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>



1kp +

kp
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General Properties of Projection Algorithms 

Proposition.  In such algorithms, assuming that ≠ ∅ , 

• { }*kp p−  is nonincreasing for all *p ∈  

• { }kp  is bounded  

• 1 0k kp p+ − →   

• If { }kϕ∇  is bounded, then { }limsup ( ) 0k
k

k
pϕ

→∞
≤   

• If all limit points of { }kp  are in  , then { }kp  converges to a 
point in   

 

The first three properties hold no matter how badly we choose kϕ  

The idea is to pick kϕ  so that the stipulations of the last two 
properties hold – then we have a convergent algorithm 

If we pick kϕ  badly, we may “stall” 
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Selecting the Right kϕ  

• Selecting  kϕ  involves picking some , : ( )ipk k k k
i i i i ix y y f x∈ ∈∂ ,

1, ,i n=   
 

• It turns out there are many ways to pick ,k k
i ix y  so that the last 

two properties of the proposition are satisfied 
 

• One fundamental thing we would like is  

1
( , ) , 0

n
k k k k k k

k i i i i
i

z G z x y wϕ
=

− − ≥∑w  

with strict inequality if ( , )k kz ∉w  
 

• The oldest suggestion is “prox” (E & Svaiter 2008 & 2009) 
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The Prox Operation  

• Suppose we have a convex function { }: pf → ∪ +∞   
• Take any vector pr∈  and scalar 0c >  and solve 

2

'

1arg min ( ') '
2px

x f x x r
c∈

 = + − 
 

  

• Optimality condition for this minimization is 

10 ( ) ( )f x x r
c

∈∂ + −   

• So we have 1 ( ) ( )y r x f x
c

− ∈∂   

• And 1 ( )x cy x c r x r
c

+ = + ⋅ − =  

• So, we just found , px y∈  such that ( )y f x∈∂  and x cy r+ =  
• Call this Prox ( )c

f r∂   
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Picture 

 
• The choice of , px y∈  such that ( )y f x∈∂  and x cy r+ =  must 

be unique; otherwise f∂ would not be monotone 
• If f is closed and proper, then this solution must exist 
• Any vector pr∈  can then be written in a unique way as 

x cy r+ = , where ( )y f x∈∂  
o Generalizes projection to a subspace and its complement 

x cy r+ =

( )10, c r

( ,0)r

( , )x y

f∂



May 2019        20 of 45 

Prox Does the Job!  

• We have an iterate 1( , ) ( , , , )k k k k k k
np z z w w= = w   

• Take any 1 , , 0k nkc c >  and consider ( , ) Prox ( )ik

i

ck k k k
i i f i ik ix y G z c w∂= +  

 
• Then ( )k k k k k k k k

i ik i i ik i ik i i i ix c y G z c w c y w G z x+ = + ⇔ − = −  

• Implying 
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥   

k k k k
i ik i i ik ix c y G z c w+ = +

( , )k k
i ix y

( , )k k
iz w

iT



May 2019        21 of 45 

Prox Finishes the Job 

From 
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥  

we have that 

1
, 0

n
k k k k

i i i i
i

G z x y w
=

− − ≥∑  

and this inequality is strict unless k k
i iG z x=  and k k

i iy w=  for all i, 
which means that ( , )k kz ∈w  

 

The entire convergence proof follows from this same relationship. 
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A First Algorithm 

• These conditions allow one to prove that the cuts are “deep 
enough” and we obtain convergence 

Starting with an arbitrary 0 0 0
1( , , , )nz w w :   

For 0,1,2,k =   

1. For 1, ,i n=  , compute ,( , ) Prox ( )i k

i

ck k k k
i i T i i ix y G z c w= +   

(Process operators: Decomposition Step) 

2. Define 1
1

( , , , ) ,
n

k k
k n i i i i

i
z w w G z x y wϕ

=

= − −∑  

3. Compute 1 1 1
1( , , , )k k k

nz w w+ + +
  by projecting 1

1( , , , )k k k
nz w w+

  
onto the halfspace 1( , , , ) 0k nz w wϕ ≤  
(possibly with some overrelaxation)      (Coordination Step) 

• This simple algorithm combines aspects of E & Svaiter 2009 
and Alotaibi et al. 2014 
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Including the Details (Version 1: general case) 

• Choose any min max0 2λ λ< ≤ <   
• For 1,2,k =  

{ }

{ }

1 1 1 1

1

1
2 2

1

min max
1

, : ( ), 1, ,

( , , ) proj ( , , ) ( , , ) 0

max , ,0

[ , ]

P  to find 

,  where 

Pick any

rocess operat r

 

o s ipk k k k
i i i i i

nk k k k
n n n i ii

nk k
i ii

n k k
i i i ii

k nk k
ii

k

x y y f x i n

u u x x w w G w

v G y

G z x y w

v u

z

θ

λ λ λ

=

=

=

=

+

∈ ∈∂ =

= = =

=

− −
=

+

∈

=

∑

∑
∑

∑

  T

T

 

  

1 , 1, ,

k k
k k

k k k
i i k k i

z v

w w u i n

λ θ

λ θ+

−

= − = 
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Including the Details (Version 2: , Id mn np m G= =


) 

• Choose any min max0 2λ λ< ≤ <   
• For 1,2,k =  

{ }
1

1

1
2 2

1

min max
1

1

, : ( ), 1, ,

, 1, , 1

max , ,0

[ , ]

1,

 to find 

Pick 

Process operator

n

s

a y 

ipk k k k
i i i i i

k k k
i i i n

nk k k
i i ni

n k k
i i i ii

k nk k
ii

k k k
k k

k k k
i i k k i

x y y f x i n

u x G x i n

v G y y

G z x y w

v u

z z v

w w u i

θ

λ λ λ

λ θ

λ θ

−

=

=

=

+

+

∈ ∈∂ =

= − = −

= +

− −
=

+

∈

= −

= − =

∑
∑

∑


T

 



, 1n −
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Many Variations Possible in “Process Operators” 

1. Inexact processing: the prox operations may be performed 
approximately using a relative error criterion 
• E & Svaiter 2009 

2. Block iterations: you do not have to process every operator 
at every iteration; you may process some subset and let 

1 1( , ) ( , )k k k k
i i i ix y x y− −=  for the rest, so long as you process each 

operator at least once every M iterations 
• Combettes & E 2018, E 2017 

3. Asynchrony: you may process operators using (boundedly) old 
information ( , ) ( , )( , )d i k d i kz w , where ( , )k d i k k K≥ ≥ −   
• Combettes & E 2018, E 2017 

4. Non-prox steps: For Lipschitz continuous gradients, 
procedures using one or two gradient steps may be 
substituted for the prox operations 
• Johnstone and E 2018, 2019 

also see Tranh-Dinh and Vũ 2015 + “mix and match” 
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Another Variation:  Primal-Dual Scaling 

• Method performs projections in primal-dual space 

• Consider scaling the problem: , 0i if fα α→ >   

• If α  is large, dual convergence will be emphasized over primal 

• If α  is small, primal convergence will be emphasized over dual 
 

• To compensate, use the inner product on 1n+  given by 

1 1
1

( , , , ), ( , , , ) , ,
n

n n i i
i

z w w z w w z z w w
γ

γ
=

′ ′ ′ ′ ′= +∑    

and corresponding norm, for any scalar 0γ >   
 

• In the ADMM and related methods the penalty parameter can 
compensate for problems scaling, but projective splitting is 
different 
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An Implementation Idea:  Greedy Block Selection 

• Our separating hyperplane is 

1 1
1

( , , , ) , 0
n

k k
k n i i i i

i
z w w G z x y wϕ −

=

= − − =∑  

 
 

• If we project without any overrelaxation, we will have 

1 1 1 1 1
1 1

1
( , , , ) , 0

n
k k k k k k k

k n i i i i
i

z w w G z x y wϕ + + + + +
−

=

= − − =∑  

 

Z 

{ }( ) 0k kH p pϕ= =

1kp + kp
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Greedy Block Selection (2a) 

1 1

1
, 0

n
k k k k

i i i i
i

G z x y w+ +

=

− − =∑  

• If all the 1 1,k k k k
ik i i i iG z x y wϕ + += − −  are zero, we are in    

• Otherwise, some are positive and some are negative 
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Greedy Block Selection (2b) 

1 1

1
, 0

n
k k k k

i i i i
i

G z x y w+ +

=

− − =∑  

• If all the 1 1,k k k k
ik i i i iG z x y wϕ + += − −  are zero, we are in    

• Otherwise, some are positive and some are negative 

 
• Pick a block with 0ikϕ <  

• Processing block i results in 0ikϕ ≥  
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Greedy Block Selection (2c) 

1 1

1
, 0

n
k k k k

i i i i
i

G z x y w+ +

=

− − =∑  

• If all the 1 1,k k k k
ik i i i iG z x y wϕ + += − −  are zero, we are in    

• Otherwise, some are positive and some are negative 

 
• Pick a block with 0ikϕ <  

• Processing block i results in 0ikϕ ≥  

• Will make the entire sum positive again 

• ⇒ Can cut off the current point by processing just one block 
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Greedy Block Selection (3) 

• A simple “greedy” heuristic: prioritize the block i with the 
most negative ikϕ  
 

This ignores several things: 

• How large will ikϕ  become after we process the block? 

• The projection formula onto the hyperplane is 

1 2

( )k k
k k k

k

pp p ϕ ϕ
ϕ

+

 
= − ∇  ∇ 

  

So, the length of the step is 

( )k k

k

pϕ
ϕ∇

 

The heuristic makes some attempt to obtain a large 
numerator, but ignores the denominator 
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Computational Experiments: LASSO 

LASSO problems: 

{ }21
2 1

min
dx

Qx b xλ
∈

− +


  

Partition Q into r  blocks of rows, set 1n r= +   

21
2 1

1
min

d

r

i ix i
Q x b xλ

∈ =

 
− + 

 
∑



 

So we can set  

1
( ) ( ), 1.. 1i i i i nT x Q Q x b i n T λ= − ∀ ∈ − = ∂ ⋅T   

• At each iteration, process blocks { , }i n , where 1.. 1i n∈ −  is 
selected randomly or greedily 

• Measure the number of “Q-equivalent” matrix multiplies 
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Augmented Cancer RNA Data: Dense, 3,204 × 20,531 

 
“PSFor”  : forward steps for 1, ,i r=     
“PSBack” : proximal steps 
“(10,G)” : 10r = , greedy selection 

526MB 
of data 
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Hand Gesture Data: Dense, 1,500 × 3,000 

 

36MB 
of data 
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drivFace Data: Dense, 606 × 6,400 

 

31MB 
of data 
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Randomly Generated Data: Dense, 1,000 × 100,000 

 

800MB 
of data 
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A (not Very Realistic) Portfolio Selection Application 
1
2

1

min
ST

1, 0m
ii

x Qx
r x R

x x
=

≥

= ≥∑

T

T   

• Q is a 10,000 × 10,000 dense positive semidefinite matrix 

• Model as minimizing the sum of three functions  1 2 3f f f+ +   

1 1
1 2 22

0, 1, 00,
( ) ( ) ( )

, , otherwise

m
ii

x xr x R
f x x Qx f x f x

r x R
=

 = ≥≥ = = = 
+∞ < +∞ 

∑T
T

T  

• 1f  has a Lipschitz/cocoercive gradient 

• 2 3,f f  have simple, linear-time prox operators 

• The size and density of Q makes this problem hard for 
standard QP solvers 
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Run Time Results (Mixed) 

 
• R = (Rfac) × (average value of ir ) 

0

5

10

15

20

25

30

Rfac=0.5 Instances Rfac=0.8 Instances Rfac=1 Instances Rfac=1.5 Instances

Average Run Time Over 10 Problem Instances (NumPy Implementation)

Projective, one forward step for f1 Pedregosa & Gidel 3-op splitting

Chambolle-Pock primal-dual (product space) Primal-dual Tseng (Combettes + Pesquet)

Malitsky + Tam forward-reflect backward (primal-dual)
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Sparse Group-Regularized Logistic Regression, 1 2 0.05λ λ= =   

( )( )
0

0
1

11 2 2,
min log 1 exp ( )

d

n

i i Gx x i G
y x a x x xλ λ

∈ ∈ = ∈

 
+ − + + + 

 
∑ ∑

 

  

where   is a disjoint collection of subsets of {1, , }d   

 
Breast cancer gene expression dataset (7705 genes × 60 patients) 
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Sparse Group-Regularized Logistic Regression, 1 2 0.5λ λ= =   
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Sparse Group-Regularized Logistic Regression, 1 2 0.85λ λ= =  
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Another Application: Stochastic Programming 

• Multi-stage linear programming problem over an unfolding tree 
of scenarios 

• Application of projective splitting in a working paper by E, 
Watson and Woodruff 

• None of the iG  are the identity 

• Subproblems are quadratic programming problems for a single 
(multi-stage) scenario 

• Results in a method resembling Rockafellar and Wets’ 
progressive hedging (PH) method (blocks = scenarios) 

• PH synchronous and processes every scenario at every iteration 
• Our method is asynchronous and can process as few as one 

scenario per iteration 
• Implemented within the Python-based PySP modeling/solution 

environment (Watson, Woodruff & Hart 2012) 
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Preliminary Results on a 32-Core Workstation (Woodruff) 

 
10,000N =  scenarios in 20n =  bundles, times in seconds 

Blue points are PH on the same scenarios (and bundles) 

• CPLEX cannot solve the extensive form of this problem in 3 
days with 96 cores and 1TB RAM 
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Something to Keep in Mind 

The projection operations, e.g. 

{ }1
2 2

1

1

1

max , ,0

1, , 1

n k k
i i i ii

k nk k
ii

k k k
k k

k k k
i i k k i

G z x y w

v u

z z v

w w u i n

θ

λ θ

λ θ

=

=

+

+

− −
=

+

= −

= − = −

∑
∑



 

• Require linear time (less in a parallel implementation) 

• But do touch every primal and dual variable 
 

• If processing an operator requires only a simple linear-time 
operation, one might as well do it every iteration 

• Higher-complexity operations (matrix multiplication, quadratic 
programming) are different 
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Conclusions 

• Projective splitting is a powerful framework for decomposing 
convex optimization problems 

• Numerous variations are possible 

• Does not care how many operators there are 

• Accomplished “full splitting” when linear coupling matrices iG  
are present 

• Has applications in  

o Data analysis / statistics 

o Multistage stochastic programming 
 

o Vision and imaging ???????????????????????? 
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