Projective Splitting Methods for Decomposing Convex Optimization Problems

J onathan Eckstein
Rutgers University, New J ersey, USA

Various portions of this talk describe joint work with Patrick Combettes - NC State University, USA
Patrick J ohnstone - Rutgers University, USA
Benar F. Svaiter - IMPA, Brazil
Also: Jean-Paul Watson - Sandia National Labs, USA David L. Woodruff — UC Davis, USA

Rutgers
RUTGERS
Rutgers Business School
Newark and New Brunswick

Funded in part by NSF grants
CCF-1115638, CCF-1617617, and
AFOSR grant FA9550-15-1-0251

Introductory Remarks

- I did some of the earlier work on an optimization algorithm called the ADMM (the Alternating Direction Method of Multipliers)
o But not the earliest work

Introductory Remarks

- I did some of the earlier work on an optimization algorithm called the ADMM (the Alternating Direction Method of Multipliers)
o But not the earliest work
- I know that the ADMM has been used in image processing because about 15 years ago I started being asked to referee a deluge of papers with this picture:

Introductory Remarks

- I did some of the earlier work on an optimization algorithm called the ADMM (the Alternating Direction Method of Multipliers)
o But not the earliest work
- I know that the ADMM has been used in image processing because about 15 years ago I started being asked to referee a deluge of papers with this picture:

Introductory Remarks

- I did some of the earlier work on an optimization algorithm called the ADMM (the Alternating Direction Method of Multipliers)
o But not the earliest work
- I know that the ADMM has been used in image processing because about 15 years ago I started being asked to referee a deluge of papers with this picture:

- Today I want to talk about an algorithm that uses similar building blocks to the ADMM but is much more flexible

More General Problem Setting

The algorithms in this talk can work for monotone inclusion problems of the form

$$
0 \in \sum_{i=1}^{n} G_{i}^{*} T_{i}\left(G_{i} x\right)
$$

where

- $\mathcal{H}_{0}, \ldots, \mathcal{H}_{n}$ are real Hilbert spaces
- $T_{i}: \mathcal{H}_{i} \rightrightarrows \mathcal{H}_{i}$ are (generally set-valued) maximal monotone operators, $i=1, \ldots, n$
- $G_{i}: \mathcal{H}_{0} \rightrightarrows \mathcal{H}_{i}$ are bounded linear maps, $i=1, \ldots, n$

However, for this talk we will restrict ourselves to...

A General Convex Optimization Problem

$$
\min _{x}\left\{\sum_{i=1}^{n} f_{i}\left(G_{i} x\right)\right\}
$$

- For $i=1, \ldots, n, f_{i}: \mathbb{R}^{p_{i}} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed proper convex
- For $i=1, \ldots, n, G_{i}$ is a $p_{i} \times m$ real matrix
- Assume you have a class of such problems that is not suitable for standard LP/ NLP solvers because either
o The problems are very large
o They is fairly large but also dense

Subgradient Maps of Convex Functions, Monotonicity

The subgradient map ∂f of a convex function $f: \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ is given by

$$
\partial f(x)=\left\{y \mid f\left(x^{\prime}\right) \geq f(x)+\left\langle y, x^{\prime}-x\right\rangle \forall x^{\prime} \in \mathbb{R}^{p}\right\} .
$$

This has the property that

$$
y \in \partial f(x), y^{\prime} \in \partial f\left(x^{\prime}\right) \Rightarrow\left\langle x-x^{\prime}, y-y^{\prime}\right\rangle \geq 0
$$

Proof:

Normal Cone Maps

The indicator function of a nonempty closed convex set C is

$$
\delta_{C}(x)= \begin{cases}0, & x \in C \\ +\infty, & x \notin C\end{cases}
$$

Its subgradient map is the normal cone map N_{C} of C :

$$
\partial \delta_{C}(x)=N_{C}(x)= \begin{cases}\left\{y \mid\left\langle y, x^{\prime}-x\right\rangle \leq 0 \forall x^{\prime} \in C\right\}, & x \in C \\ \varnothing & x \notin C\end{cases}
$$

$$
\begin{aligned}
\left\langle y, x^{\prime}-x\right\rangle & \leq 0 \\
+\quad\left\langle y^{\prime}, x-x^{\prime}\right\rangle & \leq 0 \\
\hline\left\langle y^{\prime}-y, x-x^{\prime}\right\rangle & \leq 0
\end{aligned}
$$

A Subgradient Chain Rule

- Suppose $f: \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed proper convex
- Suppose G is a $p \times m$ real matrix

Then for any x,

$$
\partial(f \circ G)(x) \supseteq G^{\top} \partial f(G x)=\left\{G^{\top} y \mid y \in \partial f(G x)\right\}
$$

and "usually"

$$
\partial(f \circ G)(x)=G^{\top} \partial f(G x)
$$

An Optimality Condition

Let's go back to

$$
\min _{x}\left\{\sum_{i=1}^{n} f_{i}\left(G_{i} x\right)\right\}
$$

Suppose we have $z \in \mathbb{R}^{m}, w_{1} \in \mathbb{R}^{p_{1}}, \ldots, w_{n} \in \mathbb{R}^{p_{n}}$ such that

$$
\begin{array}{ll}
w_{i} \in \partial f_{i}\left(G_{i} z\right) & i=1, \ldots, n \\
\sum_{i=1}^{n} G_{i}^{\top} w_{i}=0 & \\
\hline
\end{array}
$$

The chain rule then implies that $0 \in \partial\left[\sum_{i=1}^{n} f_{i} \circ G_{i}\right](z)$, so... z is a solution to our problem

- This is always a sufficient optimality condition
- It's "usually" necessary as well
- The w_{i} are the Lagrange multipliers / dual variables

The Primal-Dual Solution Set (Kuhn-Tucker Set)

$$
\mathcal{S}=\left\{\left(z, w_{1}, \ldots, w_{n}\right) \mid(\forall i=1, \ldots n) w_{i} \in \partial f_{i}\left(G_{i}\right), \sum_{i=1}^{n} G_{i}^{\top} w_{i}=0\right\}
$$

Or, if we assume that $p_{n}=m, G_{n}=\operatorname{Id}_{\mathbb{R}^{n}}$,
$\mathcal{S}=\left\{\left(z, w_{1}, \ldots, w_{n-1}\right) \mid(\forall i=1, \ldots n-1) w_{i} \in \partial f_{i}\left(G_{i} z\right),-\sum_{i=1}^{n-1} G_{i}^{\top} w_{i} \in \partial f_{n}(z)\right\}$

- This is the set of points satisfying the optimality conditions
- Standing assumption: \mathcal{S} is nonempty
- Essentially in E \& Svaiter 2009:
\mathcal{S} is a closed convex set
- In the $p_{n}=m, G_{n}=\operatorname{Id}_{\mathbb{R}^{m}}$ case, streamline notation:

$$
\text { For } \boldsymbol{w} \in \mathcal{H}_{1} \times \cdots \times \mathcal{H}_{n-1} \text {, let } w_{n} \triangleq-\sum_{i=1}^{n-1} G_{i}^{*} w_{i}
$$

Valid Inequalities for \mathcal{S}

- Take some $x_{i}, y_{i} \in \mathbb{R}^{p_{i}}$ such that $y_{i} \in \partial f_{i}\left(x_{i}\right)$ for $i=1, \ldots, n$
- If $(z, w) \in \mathcal{S}$, then $w_{i} \in \partial f_{i}\left(G_{i} z\right)$ for $i=1, \ldots, n$
- So, $\left\langle x_{i}-G_{i} z, y_{i}-w_{i}\right\rangle \geq 0$ for $i=1, \ldots, n$
- Negate and add up:

$$
\varphi(z, \boldsymbol{w})=\sum_{i=1}^{n}\left\langle G_{i} z-x_{i}, y_{i}-w_{i}\right\rangle \leq 0 \quad \forall(z, \boldsymbol{w}) \in \mathcal{S}
$$

Confirming that φ is Affine

The quadratic terms in $\varphi(z, w)$ take the form

$$
\sum_{i=1}^{n}\left\langle G_{i} z,-w_{i}\right\rangle=\sum_{i=1}^{n}\left\langle z,-G_{i}^{\top} w_{i}\right\rangle=\left\langle z,-\sum_{i=1}^{n} G_{i}^{\top} w_{i}\right\rangle=\langle z,-0\rangle=0
$$

- Also true in the $p_{n}=m, G_{n}=\operatorname{Id}_{\mathbb{R}^{m}}$ case where we drop the $n^{\text {th }}$ index
o Slightly different proof, same basic idea

Generic Projection Method for a

Closed Convex Set \mathcal{S} in a Hilbert Space \mathcal{H}

Apply the following general template:

- Given $p^{k} \in \mathcal{H}$, choose some affine function φ_{k} with $\varphi_{k}(p) \leq 0 \forall p \in \mathcal{S}$
- Project p^{k} onto $H_{k}=\left\{p \mid \varphi_{k}(p)=0\right\}$, possibly with an overrelaxation factor $\lambda_{k} \in[\varepsilon, 2-\varepsilon]$, giving p_{k+1}, and repeat...

In our case: $\mathcal{H}=\mathbb{R}^{m} \times \mathbb{R}^{p_{1}} \times \cdots \times \mathbb{R}^{p_{n}}$ and we find φ_{k} by picking some $x_{i}^{k}, y_{i}^{k} \in \mathbb{R}^{p_{i}}: y_{i}^{k} \in \partial f_{i}\left(x_{i}^{k}\right), i=1, \ldots, n$ and using the construction above

General Properties of Projection Algorithms

Proposition. In such algorithms, assuming that $\mathcal{S} \neq \varnothing$,

- $\left\{\left\|p^{k}-p^{*}\right\|\right\}$ is nonincreasing for all $p^{*} \in \mathcal{S}$
- $\left\{p^{k}\right\}$ is bounded
- $p^{k+1}-p^{k} \rightarrow 0$
- If $\left\{\nabla \varphi_{k}\right\}$ is bounded, then $\limsup _{k \rightarrow \infty}\left\{\varphi_{k}\left(p^{k}\right)\right\} \leq 0$
- If all limit points of $\left\{p^{k}\right\}$ are in \mathcal{S}, then $\left\{p^{k}\right\}$ converges to a point in \mathcal{S}

The first three properties hold no matter how badly we choose φ_{k}
The idea is to pick φ_{k} so that the stipulations of the last two properties hold - then we have a convergent algorithm If we pick φ_{k} badly, we may "stall"

Selecting the Right φ_{k}

- Selecting φ_{k} involves picking some $x_{i}^{k}, y_{i}^{k} \in \mathbb{R}^{p_{i}}: y_{i}^{k} \in \partial f_{i}\left(x_{i}^{k}\right)$, $i=1, \ldots, n$
- It turns out there are many ways to pick x_{i}^{k}, y_{i}^{k} so that the last two properties of the proposition are satisfied
- One fundamental thing we would like is

$$
\begin{aligned}
& \varphi_{k}\left(z^{k}, w^{k}\right) \triangleq \sum_{i=1}^{n}\left\langle G_{i} z^{k}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k}\right\rangle \geq 0 \\
& \text { with strict inequality if }\left(z^{k}, w^{k}\right) \notin \mathcal{S}
\end{aligned}
$$

- The oldest suggestion is "prox" (E \& Svaiter 2008 \& 2009)

The Prox Operation

- Suppose we have a convex function $f: \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$
- Take any vector $r \in \mathbb{R}^{p}$ and scalar $c>0$ and solve

$$
x=\underset{x^{\prime} \in \mathbb{R}^{p}}{\arg \min }\left\{f\left(x^{\prime}\right)+\frac{1}{2 c}\left\|x^{\prime}-r\right\|^{2}\right\}
$$

- Optimality condition for this minimization is

$$
0 \in \partial f(x)+\frac{1}{c}(x-r)
$$

- So we have $y \triangleq \frac{1}{c}(r-x) \in \partial f(x)$
- And $x+c y=x+c \cdot \frac{1}{c}(r-x)=r$
- So, we just found $x, y \in \mathbb{R}^{p}$ such that $y \in \partial f(x)$ and $x+c y=r$
- Call this $\operatorname{Prox}_{\partial f}^{c}(r)$

Picture

- The choice of $x, y \in \mathbb{R}^{p}$ such that $y \in \partial f(x)$ and $x+c y=r$ must be unique; otherwise ∂f would not be monotone
- If f is closed and proper, then this solution must exist
- Any vector $r \in \mathbb{R}^{p}$ can then be written in a unique way as
$x+c y=r$, where $y \in \partial f(x)$
o Generalizes projection to a subspace and its complement

Prox Does the J ob!

- We have an iterate $p^{k}=\left(z^{k}, \boldsymbol{w}^{k}\right)=\left(z^{k}, w_{1}^{k}, \ldots, w_{n}^{k}\right)$
- Take any $c_{1 k}, \ldots, c_{n k}>0$ and consider $\left(x_{i}^{k}, y_{i}^{k}\right)=\operatorname{Prox}_{\partial \sigma_{i}}^{c_{i k}}\left(G_{i} z^{k}+c_{i k} w_{i}^{k}\right)$

- Then $x_{i}^{k}+c_{i k} y_{i}^{k}=G_{i} z^{k}+c_{i k} w_{i}^{k} \Leftrightarrow c_{i k}\left(y_{i}^{k}-w_{i}^{k}\right)=G_{i} z^{k}-x_{i}^{k}$
- Implying $\left\langle G_{i} z^{k}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k}\right\rangle=c_{i k}\left\|G_{i} z^{k}-x_{i}^{k}\right\|^{2}=c_{i k}^{-1}\left\|y_{i}^{k}-w_{i}^{k}\right\|^{2} \geq 0$

Prox Finishes the Job

From

$$
\left\langle G_{i} z^{k}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k}\right\rangle=c_{i k}\left\|G_{i} z^{k}-x_{i}^{k}\right\|^{2}=c_{i k}^{-1}\left\|y_{i}^{k}-w_{i}^{k}\right\|^{2} \geq 0
$$

we have that

$$
\sum_{i=1}^{n}\left\langle G_{i} z^{k}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k}\right\rangle \geq 0
$$

and this inequality is strict unless $G_{i} z^{k}=x_{i}^{k}$ and $y_{i}^{k}=w_{i}^{k}$ for all i, which means that $\left(z^{k}, w^{k}\right) \in \mathcal{S}$

The entire convergence proof follows from this same relationship.

A First Algorithm

- These conditions allow one to prove that the cuts are "deep enough" and we obtain convergence
Starting with an arbitrary ($z^{0}, w_{1}^{0}, \ldots, w_{n}^{0}$):
For $k=0,1,2, \ldots$

1. For $i=1, \ldots, n$, compute $\left(x_{i}^{k}, y_{i}^{k}\right)=\operatorname{Prox}_{T_{i}}^{c_{i, k}}\left(G_{i} z^{k}+c_{i} w_{i}^{k}\right)$ (Process operators: Decomposition Step)
2. Define $\varphi_{k}\left(z, w_{1}, \ldots, w_{n}\right)=\sum_{i=1}^{n}\left\langle G_{i} z-x_{i}^{k}, y_{i}^{k}-w_{i}\right\rangle$
3. Compute ($\left.z^{k+1}, w_{1}^{k+1}, \ldots, w_{n}^{k+1}\right)$ by projecting ($z^{k+1}, w_{1}^{k}, \ldots, w_{n}^{k}$) onto the halfspace $\varphi_{k}\left(z, w_{1}, \ldots, w_{n}\right) \leq 0$ (possibly with some overrelaxation) (Coordination Step)

- This simple algorithm combines aspects of E \& Svaiter 2009 and Alotaibi et al. 2014

Including the Details (Version 1: general case)

- Choose any $0<\lambda_{\text {min }} \leq \lambda_{\text {max }}<2$
- For $k=1,2, \ldots$

$$
\left\lvert\, \begin{aligned}
& \text { Process operators to find } x_{i}^{k}, y_{i}^{k} \in \mathbb{R}^{p_{i}}: y_{i}^{k} \in \partial f_{i}\left(x_{i}^{k}\right), i=1, \ldots, n \\
& \left(u_{1}^{k}, \ldots, u_{n}^{k}\right)=\operatorname{proj}_{\mathcal{G}}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right), \text { where } \mathcal{G}=\left\{\left(w_{1}, \ldots, w_{n}\right) \mid \sum_{i=1}^{n} G_{i}^{\top} w_{i}=0\right\} \\
& v^{k}=\sum_{i=1}^{n} G_{i}^{\top} y_{i}^{k} \\
& \theta_{k}=\frac{\max \left\{\sum_{i=1}^{n}\left\langle G_{i} z-x_{i}^{k}, y_{i}^{k}-w_{i}\right\rangle, 0\right\}}{\left\|v^{k}\right\|^{2}+\sum_{i=1}^{n}\left\|u_{i}^{k}\right\|^{2}} \\
& \text { Pick any } \lambda \in\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right] \\
& z^{k+1}=z^{k}-\lambda_{k} \theta_{k} v^{k} \\
& w_{i}^{k+1}=w_{i}^{k}-\lambda_{k} \theta_{k} u_{i}^{k}, \quad i=1, \ldots, n
\end{aligned}\right.
$$

Including the Details (Version 2: $p_{n}=m, G_{n}=\operatorname{Id}_{\mathbb{R}^{m}}$)

- Choose any $0<\lambda_{\text {min }} \leq \lambda_{\text {max }}<2$
- For $k=1,2, \ldots$

$$
\begin{aligned}
& \text { Process operators to find } x_{i}^{k}, y_{i}^{k} \in \mathbb{R}^{p_{i}}: y_{i}^{k} \in \partial f_{i}\left(x_{i}^{k}\right), i=1, \ldots, n \\
& u_{i}^{k}=x_{i}^{k}-G_{i} x_{n}^{k}, \quad i=1, \ldots, n-1 \\
& v^{k}=\sum_{i=1}^{n-1} G_{i}^{\top} y_{i}^{k}+y_{n}^{k} \\
& \theta_{k}=\frac{\max \left\{\sum_{i=1}^{n}\left\langle G_{i} z-x_{i}^{k}, y_{i}^{k}-w_{i}\right\rangle, 0\right\}}{\left\|v^{k}\right\|^{2}+\sum_{i=1}^{n}\left\|u_{i}^{k}\right\|^{2}} \\
& \operatorname{Pick} \operatorname{any} \lambda \in\left[\lambda_{\min }, \lambda_{\max }\right] \\
& z^{k+1}=z^{k}-\lambda_{k} \theta_{k} v^{k} \\
& w_{i}^{k+1}=w_{i}^{k}-\lambda_{k} \theta_{k} u_{i}^{k} \quad i=1, \ldots, n-1
\end{aligned}
$$

Many Variations Possible in "Process Operators"

1. Inexact processing: the prox operations may be performed approximately using a relative error criterion

- E \& Svaiter 2009

2. Block iterations: you do not have to process every operator at every iteration; you may process some subset and let $\left(x_{i}^{k}, y_{i}^{k}\right)=\left(x_{i}^{k-1}, y_{i}^{k-1}\right)$ for the rest, so long as you process each operator at least once every M iterations

- Combettes \& E 2018, E 2017

3. Asynchrony: you may process operators using (boundedly) old information ($\mathrm{a}^{d(i, k)}, \boldsymbol{w}^{d(i, k)}$), where $k \geq d(i, k) \geq k-K$

- Combettes \& E 2018, E 2017

4. Non-prox steps: For Lipschitz continuous gradients, procedures using one or two gradient steps may be substituted for the prox operations

- J ohnstone and E 2018, 2019 also see Tranh-Dinh and Vũ 2015

Another Variation: Primal-Dual Scaling

- Method performs projections in primal-dual space
- Consider scaling the problem: $f_{i} \rightarrow \alpha f_{i}, \alpha>0$
- If α is large, dual convergence will be emphasized over primal
- If α is small, primal convergence will be emphasized over dual
- To compensate, use the inner product on \mathcal{H}^{n+1} given by

$$
\left\langle\left(z, w_{1}, \ldots, w_{n}\right),\left(z^{\prime}, w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right)\right\rangle_{\gamma}=\gamma\left\langle z, z^{\prime}\right\rangle+\sum_{i=1}^{n}\left\langle w_{i}, w_{i}^{\prime}\right\rangle
$$

and corresponding norm, for any scalar $\gamma>0$

- In the ADMM and related methods the penalty parameter can compensate for problems scaling, but projective splitting is different

An Implementation Idea: Greedy Block Selection

- Our separating hyperplane is

$$
\varphi_{k}\left(z, w_{1}, \ldots, w_{n-1}\right)=\sum_{i=1}^{n}\left\langle G_{i} z-x_{i}^{k}, y_{i}^{k}-w_{i}\right\rangle=0
$$

- If we project without any overrelaxation, we will have

$$
\varphi_{k}\left(z^{k+1}, w_{1}^{k+1}, \ldots, w_{n-1}^{k+1}\right)=\sum_{i=1}^{n}\left\langle G_{i} z^{k+1}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k+1}\right\rangle=0
$$

Greedy Block Selection (2a)

$$
\sum_{i=1}^{n}\left\langle G_{i} z^{k+1}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k+1}\right\rangle=0
$$

- If all the $\varphi_{i k}=\left\langle G_{i} z^{k+1}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k+1}\right\rangle$ are zero, we are in \mathcal{S}
- Otherwise, some are positive and some are negative

Greedy Block Selection (2b)

$$
\sum_{i=1}^{n}\left\langle G_{i} z^{k+1}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k+1}\right\rangle=0
$$

- If all the $\varphi_{i k}=\left\langle G_{i} z^{k+1}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k+1}\right\rangle$ are zero, we are in \mathcal{S}
- Otherwise, some are positive and some are negative

- Pick a block with $\varphi_{i k}<0$
- Processing block i results in $\varphi_{i k} \geq 0$

Greedy Block Selection (2c)

$$
\sum_{i=1}^{n}\left\langle G_{i} z^{k+1}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k+1}\right\rangle=0
$$

- If all the $\varphi_{i k}=\left\langle G_{i} z^{k+1}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k+1}\right\rangle$ are zero, we are in \mathcal{S}
- Otherwise, some are positive and some are negative

- Pick a block with $\varphi_{i k}<0$
- Processing block i results in $\varphi_{i k} \geq 0$
- Will make the entire sum positive again
- \Rightarrow Can cut off the current point by processing just one block

Greedy Block Selection (3)

- A simple "greedy" heuristic: prioritize the block i with the most negative $\varphi_{i k}$

This ignores several things:

- How large will $\varphi_{i k}$ become after we process the block?
- The projection formula onto the hyperplane is

$$
p_{k+1}=p_{k}-\left(\frac{\varphi_{k}\left(p_{k}\right)}{\left\|\nabla \varphi_{k}\right\|^{2}}\right) \nabla \varphi_{k}
$$

So, the length of the step is

$$
\frac{\varphi_{k}\left(p_{k}\right)}{\left\|\nabla \varphi_{k}\right\|}
$$

The heuristic makes some attempt to obtain a large numerator, but ignores the denominator

Computational Experiments: LASSO

LASSO problems:

$$
\min _{x \in \mathbb{R}^{d}}\left\{\frac{1}{2}\|Q x-b\|^{2}+\lambda\|x\|_{1}\right\}
$$

Partition Q into r blocks of rows, set $n=r+1$

$$
\min _{x \in \mathbb{R}^{d}}\left\{\sum_{i=1}^{r} \frac{1}{2}\left\|Q_{i} x-b_{i}\right\|^{2}+\lambda\|x\|_{1}\right\}
$$

So we can set

$$
T_{i}(x)=Q_{i}^{\top}\left(Q_{i} x-b_{i}\right), \forall i \in 1 . . n-1 \quad T_{n}=\lambda \partial\|\cdot\|_{1}
$$

- At each iteration, process blocks $\{i, n\}$, where $i \in 1 . . n-1$ is selected randomly or greedily
- Measure the number of "Q-equivalent" matrix multiplies

Augmented Cancer RNA Data: Dense, 3,204 × 20,531

gene

Hand Gesture Data: Dense, 1,500 $\times 3,000$
hand

36MB
of data

drivFace Data: Dense, $606 \times 6,400$

drivFace

31MB
of data

Randomly Generated Data: Dense, 1,000 $\times 100,000$

random

800MB
of data

A (not Very Realistic) Portfolio Selection Application

$$
\begin{array}{ll}
\min & \frac{1}{2} x^{\top} Q x \\
\mathrm{ST} & r^{\top} x \geq R \\
& \sum_{i=1}^{m} x_{i}=1, \quad x \geq 0
\end{array}
$$

- Q is a $10,000 \times 10,000$ dense positive semidefinite matrix
- Model as minimizing the sum of three functions $f_{1}+f_{2}+f_{3}$
$f_{1}(x)=\frac{1}{2} x^{\top} Q x \quad f_{2}(x)=\left\{\begin{array}{ll}0, & r^{\top} x \geq R \\ +\infty, & r^{\top} x<R\end{array} \quad f_{2}(x)=\left\{\begin{array}{lll}0, & \sum_{i=1}^{m} x_{i}=1, & x \geq 0 \\ +\infty, & \text { otherwise }\end{array}\right.\right.$
- f_{1} has a Lipschitz/ cocoercive gradient
- f_{2}, f_{3} have simple, linear-time prox operators
- The size and density of Q makes this problem hard for standard QP solvers

Run Time Results (Mixed)

Average Run Time Over 10 Problem Instances (NumPy Implementation)

- $R=($ Rfac $) \times\left(\right.$ average value of $\left.r_{i}\right)$

Sparse Group-Regularized Logistic Regression, $\lambda_{1}=\lambda_{2}=0.05$

$$
\min _{x_{0} \in \mathbb{R}, x \in \mathbb{R}^{d}}\left\{\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i}\left(x_{0}+a_{i}^{\top} x\right)\right)\right)+\lambda_{1}\|x\|_{1}+\lambda_{2} \sum_{G \in \mathcal{G}}\left\|x_{G}\right\|_{2}\right\}
$$

where \mathcal{G} is a disjoint collection of subsets of $\{1, \ldots, d\}$

Breast cancer gene expression dataset (7705 genes $\times 60$ patients)

Sparse Group-Regularized Logistic Regression, $\lambda_{1}=\lambda_{2}=0.5$

Sparse Group-Regularized Logistic Regression, $\lambda_{1}=\lambda_{2}=0.85$

Another Application: Stochastic Programming

- Multi-stage linear programming problem over an unfolding tree of scenarios
- Application of projective splitting in a working paper by E, Watson and Woodruff
- None of the G_{i} are the identity
- Subproblems are quadratic programming problems for a single (multi-stage) scenario
- Results in a method resembling Rockafellar and Wets' progressive hedging (PH) method (blocks = scenarios)
- PH synchronous and processes every scenario at every iteration
- Our method is asynchronous and can process as few as one scenario per iteration
- Implemented within the Python-based PySP modeling/ solution environment (Watson, Woodruff \& Hart 2012)

Preliminary Results on a 32-Core Workstation (Woodruff)

$N=10,000$ scenarios in $n=20$ bundles, times in seconds
Blue points are PH on the same scenarios (and bundles)

- CPLEX cannot solve the extensive form of this problem in 3 days with 96 cores and 1TB RAM

Something to Keep in Mind

The projection operations, e.g.

$$
\begin{aligned}
\theta_{k} & =\frac{\max \left\{\sum_{i=1}^{n}\left\langle G_{i} z-x_{i}^{k}, y_{i}^{k}-w_{i}\right\rangle, 0\right\}}{\left\|v^{k}\right\|^{2}+\sum_{i=1}^{n}\left\|u_{i}^{k}\right\|^{2}} \\
z^{k+1} & =z^{k}-\lambda_{k} \theta_{k} v^{k} \\
w_{i}^{k+1} & =w_{i}^{k}-\lambda_{k} \theta_{k} u_{i}^{k} \quad i=1, \ldots, n-1
\end{aligned}
$$

- Require linear time (less in a parallel implementation)
- But do touch every primal and dual variable
- If processing an operator requires only a simple linear-time operation, one might as well do it every iteration
- Higher-complexity operations (matrix multiplication, quadratic programming) are different

Conclusions

- Projective splitting is a powerful framework for decomposing convex optimization problems
- Numerous variations are possible
- Does not care how many operators there are
- Accomplished "full splitting" when linear coupling matrices G_{i} are present
- Has applications in
o Data analysis / statistics
o Multistage stochastic programming
o Vision and imaging ????????????????????????

